

Riemann Sums - Left

www.mymathscloud.com

Questions in past papers often come up combined with other topics.

Topic tags have been given for each question to enable you to know if you can do the question or whether you need to wait to cover the additional topic(s).

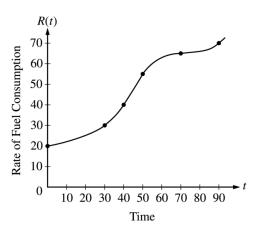
Scan the QR code(s) or click the link for instant detailed model solutions!

Qualification: AP Calculus AB

Areas: Applications of Differentiation, Integration

Subtopics: Rates of Change (Average), Riemann Sums - Left, Interpreting Meaning in Applied Contexts, Accumulation of Change

Paper: Part A-Calc / Series: 2003 / Difficulty: Hard / Question Number: 3



(minutes)	R(t) (gallons per minute)
0	20
30	30
40	40
50	55
70	65
90	70

- 3. The rate of fuel consumption, in gallons per minute, recorded during an airplane flight is given by a twice-differentiable and strictly increasing function R of time t. The graph of R and a table of selected values of R(t), for the time interval 0 ≤ t ≤ 90 minutes, are shown above.
 - (a) Use data from the table to find an approximation for R'(45). Show the computations that lead to your answer. Indicate units of measure.
 - (b) The rate of fuel consumption is increasing fastest at time t = 45 minutes. What is the value of R''(45)? Explain your reasoning.
 - (c) Approximate the value of $\int_0^{90} R(t) dt$ using a left Riemann sum with the five subintervals indicated by the data in the table. Is this numerical approximation less than the value of $\int_0^{90} R(t) dt$? Explain your reasoning.
 - (d) For $0 < b \le 90$ minutes, explain the meaning of $\int_0^b R(t) dt$ in terms of fuel consumption for the plane. Explain the meaning of $\frac{1}{b} \int_0^b R(t) dt$ in terms of fuel consumption for the plane. Indicate units of measure in both answers.

SCAN ME!

Mark Scheme
View Online

Qualification: AP Calculus AB

Areas: Applications of Differentiation, Integration

Subtopics: Rates of Change (Average), Fundamental Theorem of Calculus (First), Riemann Sums - Left

Paper: Part B-Non-Calc / Series: 2009 / Difficulty: Medium / Question Number: 5

x	2	3	5	8	13
f(x)	1	4	-2	3	6

- 5. Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in the closed interval $2 \le x \le 13$.
 - (a) Estimate f'(4). Show the work that leads to your answer.
 - (b) Evaluate $\int_{2}^{13} (3 5f'(x)) dx$. Show the work that leads to your answer.
 - (c) Use a left Riemann sum with subintervals indicated by the data in the table to approximate $\int_{2}^{13} f(x) dx$. Show the work that leads to your answer.
 - (d) Suppose f'(5) = 3 and f''(x) < 0 for all x in the closed interval $5 \le x \le 8$. Use the line tangent to the graph of f at x = 5 to show that $f(7) \le 4$. Use the secant line for the graph of f on $5 \le x \le 8$ to show that $f(7) \ge \frac{4}{3}$.

SCAN ME!

Mark Scheme
View Online

Qualification: AP Calculus AB

Areas: Applications of Differentiation, Differentiation

Subtopics: Kinematics (Displacement, Velocity, and Acceleration), Rates of Change (Average), Riemann Sums – Left , Mean Value Theorem, Implicit Differentiation

Paper: Part B-Non-Calc / Series: 2011-Form-B / Difficulty: Medium / Question Number: 5

t (seconds)	0	10	40	60
B(t) (meters)	100	136	9	49
v(t) (meters per second)	2.0	2.3	2.5	4.6

- 5. Ben rides a unicycle back and forth along a straight east-west track. The twice-differentiable function B models Ben's position on the track, measured in meters from the western end of the track, at time t, measured in seconds from the start of the ride. The table above gives values for B(t) and Ben's velocity, v(t), measured in meters per second, at selected times t.
 - (a) Use the data in the table to approximate Ben's acceleration at time t = 5 seconds. Indicate units of measure.
 - (b) Using correct units, interpret the meaning of $\int_0^{60} |v(t)| dt$ in the context of this problem. Approximate $\int_0^{60} |v(t)| dt$ using a left Riemann sum with the subintervals indicated by the data in the table.
 - (c) For $40 \le t \le 60$, must there be a time t when Ben's velocity is 2 meters per second? Justify your answer.
 - (d) A light is directly above the western end of the track. Ben rides so that at time t, the distance L(t) between Ben and the light satisfies $(L(t))^2 = 12^2 + (B(t))^2$. At what rate is the distance between Ben and the light changing at time t = 40?

SCAN ME!

Mark Scheme
View Online

Qualification: AP Calculus AB

Areas: Applications of Integration, Integration, Differentiation

Subtopics: Rates of Change (Average), Interpreting Meaning in Applied Contexts, Fundamental Theorem of Calculus (First), Riemann Sums - Left

Paper: Part A-Calc / Series: 2012 / Difficulty: Medium / Question Number: 1

t (minutes)	0	4	9	15	20
W(t) (degrees Fahrenheit)	55.0	57.1	61.8	67.9	71.0

- 1. The temperature of water in a tub at time t is modeled by a strictly increasing, twice-differentiable function W, where W(t) is measured in degrees Fahrenheit and t is measured in minutes. At time t=0, the temperature of the water is 55°F. The water is heated for 30 minutes, beginning at time t=0. Values of W(t) at selected times t for the first 20 minutes are given in the table above.
 - (a) Use the data in the table to estimate W'(12). Show the computations that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.
 - (b) Use the data in the table to evaluate $\int_0^{20} W'(t) dt$. Using correct units, interpret the meaning of $\int_0^{20} W'(t) dt$ in the context of this problem.
 - (c) For $0 \le t \le 20$, the average temperature of the water in the tub is $\frac{1}{20} \int_0^{20} W(t) \, dt$. Use a left Riemann sum with the four subintervals indicated by the data in the table to approximate $\frac{1}{20} \int_0^{20} W(t) \, dt$. Does this approximation overestimate or underestimate the average temperature of the water over these 20 minutes? Explain your reasoning.
 - (d) For $20 \le t \le 25$, the function W that models the water temperature has first derivative given by $W'(t) = 0.4\sqrt{t}\cos(0.06t)$. Based on the model, what is the temperature of the water at time t = 25?

SCAN ME!

Mark Scheme
View Online

Qualification: AP Calculus AB

Areas: Applications of Differentiation, Integration

Subtopics: Rates of Change (Average), Riemann Sums - Left, Increasing/Decreasing, Total Amount, Intermediate Value Theorem, Modelling Situations

Paper: Part A-Calc / Series: 2016 / Difficulty: Somewhat Challenging / Question Number: 1

t (hours)	0	1	3	6	8
R(t) (liters / hour)	1340	1190	950	740	700

- 1. Water is pumped into a tank at a rate modeled by $W(t) = 2000e^{-t^2/20}$ liters per hour for $0 \le t \le 8$, where t is measured in hours. Water is removed from the tank at a rate modeled by R(t) liters per hour, where R is differentiable and decreasing on $0 \le t \le 8$. Selected values of R(t) are shown in the table above. At time t = 0, there are 50,000 liters of water in the tank.
 - (a) Estimate R'(2). Show the work that leads to your answer. Indicate units of measure.
 - (b) Use a left Riemann sum with the four subintervals indicated by the table to estimate the total amount of water removed from the tank during the 8 hours. Is this an overestimate or an underestimate of the total amount of water removed? Give a reason for your answer.
 - (c) Use your answer from part (b) to find an estimate of the total amount of water in the tank, to the nearest liter, at the end of 8 hours.
 - (d) For $0 \le t \le 8$, is there a time t when the rate at which water is pumped into the tank is the same as the rate at which water is removed from the tank? Explain why or why not.

Mark Scheme View Online

Qualification: AP Calculus AB

Areas: Applications of Integration, Integration

Subtopics: Riemann Sums - Left, Increasing/Decreasing, Modelling Situations, Differentiation Technique - Chain Rule, Related Rates

Paper: Part A-Calc / Series: 2017 / Difficulty: Medium / Question Number: 1

h (feet)	0	2	5	10
A(h) (square feet)	50.3	14.4	6.5	2.9

- 1. A tank has a height of 10 feet. The area of the horizontal cross section of the tank at height h feet is given by the function A, where A(h) is measured in square feet. The function A is continuous and decreases as h increases. Selected values for A(h) are given in the table above.
 - (a) Use a left Riemann sum with the three subintervals indicated by the data in the table to approximate the volume of the tank. Indicate units of measure.
 - (b) Does the approximation in part (a) overestimate or underestimate the volume of the tank? Explain your reasoning.
 - (c) The area, in square feet, of the horizontal cross section at height h feet is modeled by the function f given by $f(h) = \frac{50.3}{e^{0.2h} + h}$. Based on this model, find the volume of the tank. Indicate units of measure.
 - (d) Water is pumped into the tank. When the height of the water is 5 feet, the height is increasing at the rate of 0.26 foot per minute. Using the model from part (c), find the rate at which the volume of water is changing with respect to time when the height of the water is 5 feet. Indicate units of measure.

SCAN ME

Mark Scheme
View Online

Qualification: AP Calculus AB

Areas: Applications of Integration, Applications of Differentiation

Subtopics: Rates of Change (Average), Riemann Sums - Left, Interpreting Meaning in Applied Contexts, Increasing/Decreasing

Paper: Part A-Calc / Series: 2024 / Difficulty: Easy / Question Number: 1

t (minutes)	0	3	7	12
C(t) (degrees Celsius)	100	85	69	55

- 1. The temperature of coffee in a cup at time t minutes is modeled by a decreasing differentiable function C, where C(t) is measured in degrees Celsius. For $0 \le t \le 12$, selected values of C(t) are given in the table shown.
 - (a) Approximate C'(5) using the average rate of change of C over the interval $3 \le t \le 7$. Show the work that leads to your answer and include units of measure.
 - (b) Use a left Riemann sum with the three subintervals indicated by the data in the table to approximate the value of $\int_0^{12} C(t) dt$. Interpret the meaning of $\frac{1}{12} \int_0^{12} C(t) dt$ in the context of the problem.
 - (c) For $12 \le t \le 20$, the rate of change of the temperature of the coffee is modeled by $C'(t) = \frac{-24.55e^{0.01t}}{t}$, where C'(t) is measured in degrees Celsius per minute. Find the temperature of the coffee at time t = 20. Show the setup for your calculations.
- (d) For the model defined in part (c), it can be shown that $C''(t) = \frac{0.2455e^{0.01t}(100-t)}{t^2}$. For 12 < t < 20, determine whether the temperature of the coffee is changing at a decreasing rate or at an increasing rate. Give a reason for your answer.

SCAN ME!

Mark Scheme
View Online

SCAN ME!

www.nsmathscloud.com

